19 research outputs found

    Time-dependent metabolic phenotyping of inflammatory dysregulation

    Get PDF
    A rich and functional description of a patient health status is the fundamental basis for the personalisation of treatment and the targeting of interventions. The function of inflammation in the healing process as well as its involvement in most major diseases is well established, yet the specific mechanism by which it contributes to the pathogenesis is still not fully understood. If conditions arising from a dysregulation of the inflammatory process are to be treated before they become irreversible, a novel understanding of these pathologies must be achieved and a stratification of patients based on their inflammatory status undertaken. The work presented in this thesis aims to deliver new analytical and statistical approaches to support the investigation of the time-dependent dysregulation of inflammation. Lipid mediators have been described as exerting a major role in the initiation and regulation of the inflammatory response, yet analytical platforms for their large-scale characterisation in human biofluids are lacking. This thesis reports the validation of an assay for the simultaneous quantification of pro- and anti-inflammatory signalling molecules in multiple human biofluids. The coverage of the assay in each biofluid is subsequently established, characterising inflammatory signalling across biological compartments. A second study explores the assay’s applicability in a clinical context; investigating the relationship between lipid mediators, current clinical markers of inflammation and post-operative complications. Characterising the interplay between signalling and regulatory networks is key to understanding a living system’s response to perturbations, yet few statistical approaches are suited for the detection of time-dependent patterns in short and irregularly sampled longitudinal datasets. This thesis reports the development of a statistical approach to support the identification of altered time-trajectories in such studies. The method’s wide applicability is subsequently demonstrated on two investigations covering the diversity of metabolic phenotyping data generation platforms. This thesis is a proof of concept for the characterisation of patient-specific inflammatory status in a clinical context and the identification of altered time-dependent patterns. Both analytical and statistical developments have been motivated by the needs of real world applications and provide a template for the characterisation and analysis of the molecular basis for treatment.Open Acces

    Consistent behavioral phenotype differences between inbred mouse strains in the IntelliCage

    Get PDF
    The between-laboratory effects on behavioral phenotypes and spatial learning performance of three strains of laboratory mice known for divergent behavioral phenotypes were evaluated in a fully balanced and synchronized study using a completely automated behavioral phenotyping device (IntelliCage). Activity pattern and spatial conditioning performance differed consistently between strains, i.e. exhibited no interaction with the between-laboratory factor, whereas the gross laboratory effect showed up significantly in the majority of measures. It is argued that overall differences between laboratories may not realistically be preventable, as subtle differences in animal housing and treatment will not be controllable, in practice. However, consistency of strain (or treatment) effects appears to be far more important in behavioral and brain sciences than the absolute overall level of such measures. In this respect, basic behavioral and learning measures proved to be highly consistent in the IntelliCage, therefore providing a valid basis for meaningful research hypothesis testing. Also, potential heterogeneity of behavioral status because of environmental and social enrichment has no detectable negative effect on the consistency of strain effects. We suggest that the absence of human interference during behavioral testing is the most prominent advantage of the IntelliCage and suspect that this is likely responsible for the between-laboratory consistency of findings, although we are aware that this ultimately needs direct testing. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society

    Development and Validation of a High-Throughput Ultrahigh-Performance Liquid Chromatography–Mass Spectrometry Approach for Screening of Oxylipins and Their Precursors

    No full text
    Lipid mediators, highly bioactive compounds synthesized from polyunsaturated fatty acids (PUFAs), have a fundamental role in the initiation and signaling of the inflammatory response. Although extensively studied in isolation, only a limited number of analytical methods offer a comprehensive coverage of the oxylipin synthetic cascade applicable to a wide range of human biofluids. We report the development of an ultrahigh-performance liquid chromatography–electrospray ionization triple quadrupole mass spectrometry (UHPLC–MS) assay to quantify oxylipins and their PUFA precursors in 100 μL of human serum, plasma, urine, and cell culture supernatant. A single 15 min UHPLC run enables the quantification of 43 oxylipins and 5 PUFAs, covering pro and anti-inflammatory lipid mediators synthesized across the cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) pathways. The method was validated in multiple biofluid matrixes (serum, plasma, urine, and cell supernatant) and suppliers, ensuring its suitability for large scale metabonomic studies. The approach is accurate, precise, and reproducible (RSD < 15%) over multiple days and concentrations. Very high sensitivity is achieved with limits of quantification inferior to picograms for the majority of analytes (0.05–125 pg) and linear range spanning up to 5 orders of magnitude. This enabled the quantification of the great majority of these analytes at their low endogenous level in human biofluids. We successfully applied the procedure to individuals undergoing a fasting intervention; oxylipin profiles highlighted significantly altered PUFA and inflammatory profiles in accordance with previously published studies as well as offered new insight on the modulation of the biosynthetic cascade responsible for the regulation of oxylipins

    MOESM1 of Longitudinal analysis of serum oxylipin profile as a novel descriptor of the inflammatory response to surgery

    No full text
    Additional file 1. Supplementary material containing detailed methodology for mass spectrometric quantification of oxylipins, representative chromatograms and supplementary data

    A role for the Ras signalling pathway in synaptic transmission and long-term memory

    No full text
    Members of the Ras subfamily of small guanine-nucleotide-binding proteins are essential for controlling normal and malignant cell proliferation as well as cell differentiation. The neuronal-specific guanine-nucleotide-exchange factor, Ras-GRF/CDC25Mm, induces Ras signalling in response to Ca2+ influx and activation of G-protein-coupled receptors in vitro, suggesting that it plays a role in neurotransmission and plasticity in vivo. Here we report that mice lacking Ras-GRF are impaired in the process of memory consolidation, as revealed by emotional conditioning tasks that require the function of the amygdala; learning and short-term memory are intact. Electrophysiological measurements in the basolateral amygdala reveal that long-term plasticity is abnormal in mutant mice. In contrast, Ras-GRF mutants do not reveal major deficits in spatial learning tasks such as the Morris water maze, a test that requires hippocampal function. Consistent with apparently normal hippocampal functions, Ras-GRF mutants show normal NMDA (N-methyl-D-aspartate) receptor-dependent long-term potentiation in this structure. These results implicate Ras-GRF signalling via the Ras/MAP kinase pathway in synaptic events leading to formation of long-term memories

    A ROLE FOR THE RAS-GRF SIGNALING PATHWAY IN NEURONAL PLASTICITY AND BEHAVIOR

    No full text
    corecore